449 research outputs found

    Correction objectives have higher impact than screw pattern and density on the optimal 3D correction of thoracic AIS: a biomechanical study

    Get PDF
    Study design Assessment of screw pattern, implant density (ID), and optimization of 3D correction through computer-based biomechanical models. Objective To investigate how screw pattern and ID affect intraoperative 3D correction of thoracic curves in adolescent idiopathic scoliosis, and how different correction objectives impact the optimal screw pattern. Summary of background data Screw pattern, ID, correction objectives and surgical strategies for posterior fusion of AIS are highly variable among experienced surgeons. The “optimal” instrumentation remains not well defined. Methods 10 patient-specific multibody models of representative adolescent idiopathic scoliosis Lenke 1A cases were built and used to compare alternative virtual correction surgeries. Five screw patterns and IDs (average: 1.6 screws/instrumented level, range: 1.2–2) were simulated, considering concave rod rotation, en bloc derotation, and compression/distraction as primary correction maneuvers. 3D correction descriptors were quantified in the coronal, sagittal and transverse planes. An objective function weighting the contribution of intraoperative 3D correction and mobility allowed rating of the outcomes of the virtual surgeries. Based on surgeon-dependent correction objectives, the optimal result among the simulated constructs was identified. Results Low-density (ID ≤ 1.4) constructs provided equivalent 3D correction compared to higher (ID ≥ 1.8) densities (average differences ranging between 2° and 3°). The optimal screw pattern varied from case to case, falling within the low-density screw category in 14% of considered scenarios, 73% in the mid-density (1.4 < ID < 1.8) and 13% in the high-density. The optimal screw pattern was unique in five cases; multiple optima were found in other cases depending on the considered correction objectives. Conclusions Low-density screw patterns provided equivalent intraoperative 3D correction to higher-density patterns. Simulated surgeon’s choice of correction objectives had the greatest impact on the selection of the optimal construct for 3D correction, while screw density and ID had a limited impact

    Preoperative assessment and evaluation of instrumentation strategies for the treatment of adolescent idiopathic scoliosis: computer simulation and optimization

    Get PDF
    UNLABELLED: BACKGROUND: A large variability in adolescent idiopathic scoliosis (AIS) correction objectives and instrumentation strategies was documented. The hypothesis was that different correction objectives will lead to different instrumentation strategies. The objective of this study was to develop a numerical model to optimize the instrumentation configurations under given correction objectives. METHODS: Eleven surgeons from the Spinal Deformity Study Group independently provided their respective correction objectives for the same patient. For each surgeon, 702 surgical configurations were simulated to search for the most favourable one for his particular objectives. The influence of correction objectives on the resulting surgical strategies was then evaluated. RESULTS: Fusion levels (mean 11.2, SD 2.1), rod shapes, and implant patterns were significantly influenced by correction objectives (p < 0.05). Different surgeon-specified correction objectives produced different instrumentation strategies for the same patient. CONCLUSIONS: Instrumentation configurations can be optimized with respect to a given set of correction objectives

    Quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images

    Get PDF
    Background: For some scoliotic patients the spinal instrumentation is inevitable. Among these patients, those with stiff curvature will need thoracoscopic disk resection. The removal of the intervertebral disk with only thoracoscopic images is a tedious and challenging task for the surgeon. With computer aided surgery and 3D visualisation of the interverterbral disk during surgery, surgeons will have access to additional information such as the remaining disk tissue or the distance of surgical tools from critical anatomical structures like the aorta or spinal canal. We hypothesized that automatically extracting 3D information of the intervertebral disk from MR images would aid the surgeons to evaluate the remaining disk and would add a security factor to the patient during thoracoscopic disk resection.Methods: This paper presents a quantitative evaluation of an automatic segmentation method for 3D reconstruction of intervertebral scoliotic disks from MR images. The automatic segmentation method is based on the watershed technique and morphological operators. The 3D Dice Similarity Coefficient (DSC) is the main statistical metric used to validate the automatically detected preoperative disk volumes. The automatic detections of intervertebral disks of real clinical MR images are compared to manual segmentation done by clinicians.Results: Results show that depending on the type of MR acquisition sequence, the 3D DSC can be as high as 0.79 (+/- 0.04). These 3D results are also supported by a 2D quantitative evaluation as well as by robustness and variability evaluations. The mean discrepancy (in 2D) between the manual and automatic segmentations for regions around the spinal canal is of 1.8 (+/- 0.8) mm. The robustness study shows that among the five factors evaluated, only the type of MRI acquisition sequence can affect the segmentation results. Finally, the variability of the automatic segmentation method is lower than the variability associated with manual segmentation performed by different physicians.Conclusions: This comprehensive evaluation of the automatic segmentation and 3D reconstruction of intervertebral disks shows that the proposed technique used with specific MRI acquisition protocol can detect intervertebral disk of scoliotic patient. The newly developed technique is promising for clinical context and can eventually help surgeons during thoracoscopic intervertebral disk resection

    MRI signal distribution within the intervertebral disc as a biomarker of adolescent idiopathic scoliosis and spondylolisthesis

    Get PDF
    Background: Early stages of scoliosis and spondylolisthesis entail changes in the intervertebral disc (IVD) structure and biochemistry. The current clinical use of MR T2-weighted images is limited to visual inspection. Our hypothesis is that the distribution of the MRI signal intensity within the IVD in T2-weighted images depends on the spinal pathology and on its severity. Therefore, this study aims to develop the AMRSID (analysis of MR signal intensity distribution) method to analyze the 3D distribution of the MR signal intensity within the IVD and to evaluate their sensitivity to scoliosis and spondylolisthesis and their severities. Methods: This study was realized on 79 adolescents who underwent a MRI acquisition (sagittal T2-weighted images) before their orthopedic or surgical treatment. Five groups were considered: low severity scoliosis (Cobb angle 50 degrees), low severity spondylolisthesis (Meyerding grades I and II), high severity spondylolisthesis (Meyerding grades III, IV and V) and control. The distribution of the MRI signal intensity within the IVD was analyzed using the descriptive statistics of histograms normalized by either cerebrospinal fluid or bone signal intensity, weighted centers and volume ratios. Differences between pathology and severity groups were assessed using one-and two-way ANOVAs. Results: There were significant (p < 0.05) variations of indices between scoliosis, spondylolithesis and control groups and between low and high severity groups. The cerebrospinal fluid normalization was able to detect differences between healthy and pathologic IVDs whereas the bone normalization, which reflects both bone and IVD health, detected more differences between the severities of these pathologies. Conclusions: This study proves for the first time that changes in the intervertebral disc, non visible to the naked eye on sagittal T2-weighted MR images of the spine, can be detected from specific indices describing the distribution of the MR signal intensity. Moreover, these indices are able to discriminate between scoliosis and spondylolisthesis and their severities, and provide essential information on the composition and structure of the discs whatever the pathology considered. The AMRSID method may have the potential to complement the current diagnostic tools available in clinics to improve the diagnostic with earlier biomarkers, the prognosis of evolution and the treatment options of scoliosis and spondylolisthesis

    Biomechanical effect of pedicle screw distribution in AIS instrumentation using a segmental translation technique: computer modeling and simulation

    Get PDF
    BACKGROUND: Efforts to select the appropriate number of implants in adolescent idiopathic scoliosis (AIS) instrumentation are hampered by a lack of biomechanical studies. The objective was to biomechanically evaluate screw density at different regions in the curve for AIS correction to test the hypothesis that alternative screw patterns do not compromise anticipated correction in AIS when using a segmental translation technique. METHODS: Instrumentation simulations were computationally performed for 10 AIS cases. We simulated simultaneous concave and convex segmental translation for a reference screw pattern (bilateral polyaxial pedicle screws with dorsal height adjustability at every level fused) and four alternative patterns; screws were dropped respectively on convex or concave side at alternate levels or at the periapical levels (21 to 25% fewer screws). Predicted deformity correction and screw forces were compared. RESULTS: Final simulated Cobb angle differences with the alternative screw patterns varied between 1 degrees to 5 degrees (39 simulations) and 8 degrees (1 simulation) compared to the reference maximal density screw pattern. Thoracic kyphosis and apical vertebral rotation were within 2 degrees of the reference screw pattern. Screw forces were 76 +/- 43 N, 96 +/- 58 N, 90 +/- 54 N, 82 +/- 33 N, and 79 +/- 42 N, respectively, for the reference screw pattern and screw dropouts at convex alternate levels, concave alternate levels, convex periapical levels, and concave periapical levels. Bone-screw forces for the alternative patterns were higher than the reference pattern (p 0.28). Alternate dropout screw forces were higher than periapical dropouts (p < 0.05). CONCLUSIONS: Using a simultaneous segmental translation technique, deformity correction can be achieved with 23% fewer screws than maximal density screw pattern, but resulted in 25% higher bone-screw forces. Screw dropouts could be either on the convex side or on the concave side at alternate levels or at periapical levels. Periapical screw dropouts may more likely result in lower bone-screw force increase than alternate level screw dropouts

    3D correction of AIS in braces designed using CAD/CAM and FEM: a randomized controlled trial

    Get PDF
    Background Recent studies showed that finite element model (FEM) combined to CAD/CAM improves the design of braces for the conservative treatment of adolescent idiopathic scoliosis (AIS), using 2D measurements from in-brace radiographs. We aim to assess the immediate effectiveness on curve correction in all three planes of braces designed using CAD/CAM and numerical simulation compared to braces designed with CAD/CAM only. Methods SRS standardized criteria for bracing were followed to recruit 48 AIS patients who were randomized into two groups. For both groups, 3D reconstructions of the spine and patient’s torso, respectively built from bi-planar radiographs and surface topography, were obtained and braces were designed using the CAD/CAM approach. For the test group, 3D reconstructions of the spine and patient’s torso were additionally used to generate a personalized FEM to simulate and iteratively improve the brace design with the objective of curve correction maximization in three planes and brace material minimization. Results For the control group (CtrlBraces), average Cobb angle prior to bracing was 29° (thoracic, T) and 25° (lumbar, L) with the planes of maximal curvature (PMC) respectively oriented at 63° and 57° on average with respect to the sagittal plane. Average apical axial rotation prior to bracing was 7° (T) and 9° (L). For the test group (FEMBraces), initial Cobb angles were 33° (T) and 28° (L) with the PMC at 68° (T) and 56° (L) and average apical axial rotation prior to bracing at 9° (T and L). On average, FEMBraces were 50% thinner and had 20% less covering surface than CtrlBraces while reducing T and L curves by 47 and 48%, respectively, compared to 25 and 26% for CtrlBraces. FEMBraces corrected apical axial rotation by 46% compared to 30% for CtrlBraces. Conclusion The combination of numerical simulation and CAD/CAM approach allowed designing more efficient braces in all three planes, with the advantages of being lighter than standard CAD/CAM braces. Bracing in AIS may be improved in 3D by the use of this simulation platform. This study is ongoing to recruit more cases and to analyze the long-term effect of bracing

    Effectiveness of braces designed using computer-aided design and manufacturing (CAD/CAM) and finite element simulation compared to CAD/CAM only for the conservative treatment of adolescent idiopathic scoliosis: a prospective randomized controlled trial

    Get PDF
    Purpose Clinical assessment of immediate in-brace effect of braces designed using CAD/CAM and FEM vs. only CAD/CAM for conservative treatment of AIS, using a randomized blinded and controlled study design. Methods Forty AIS patients were prospectively recruited and randomized into two groups. For 19 patients (control group), the brace was designed using a scan of patient’s torso and a conventional CAD/CAM approach (CtrlBrace). For the 21 other patients (test group), the brace was additionally designed using finite element modeling (FEM) and 3D reconstructions of spine, rib cage and pelvis (NewBrace). The NewBrace design was simulated and iteratively optimized to maximize the correction and minimize the contact surface and material. Results Both groups had comparable age, sex, weight, height, curve type and severity. Scoliosis Research Society standardized criteria for bracing were followed. Average Cobb angle prior to bracing was 27° and 28° for main thoracic (MT) and lumbar (L) curves, respectively, for the control group, while it was 33° and 28° for the test group. CtrlBraces reduced MT and L curves by 8° (29 %) and 10° (40 %), respectively, compared to 14° (43 %) and 13° (46 %) for NewBraces, which were simulated with a difference inferior to 5°. NewBraces were 50 % thinner and had 20 % less covering surface than CtrlBraces. Conclusion Braces designed with CAD/CAM and 3D FEM simulation were more efficient and lighter than standard CAD/CAM TLSO’s at first immediate in-brace evaluation. These results suggest that long-term effect of bracing in AIS may be improved using this new platform for brace fabrication
    corecore